blogger delicious digg diigo facebook googleplus linkedin netlog reddit twitter
Skip Navigation LinksJRI > Archive > October-December 2007, Volume 8, Issue 3 > Application of genomics and proteomics technologies to early diagnosis of reproductive organ cancers

Volume 8, Issue 3, Number 32 / October-December
(pages 259-278)

Application of genomics and proteomics technologies to early diagnosis of reproductive organ cancers

 Corresponding Author
Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran

Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran

Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran

Related Articles
in Google Scholar in PubMed


Other Format
pdfPDF Full Text (En) pdfPDF Full Text (Fa) pdfePUB Full Text (En) pdfPDF Abstract (En) pdfPDF Abstract (Fa) pdf BibTeX pdfRefMan pdfEndNote xmlPMC XML online readerPMC Reader


Advances in molecular biology over the past decade have helped enhance understanding of the complex interplay between genetic, transcriptional and translational alterations in human cancers. These molecular changes are the basis for an evolving field of high-throughput cancer screening techniques using microscopic amounts of patient-based materials. LASER capture microdissection allows pure populations of cells to be isolated from both the tumor and stroma in order to identify subtle differences in RNA and protein expression. Comparative analysis of these alterations between normal, pre-invasive, and invasive tissues, using powerful bioinformatic programs, has allowed us to identify novel tumor markers, profile complex protein pathways, and develop new molecular-based therapies. Continued refinement of such high-throughput micro-technologies will enable us to rapidly query patient specimens to identify novel methods for early diagnosis, treatment, and follow-up of a wide array of human cancers. There has also been an explosion in the development of new tools to analyze proteomic data of blood cells and other bodily fluids and materials in recent years. Analysis of a proteome would enhance the possibility of identifying protein signa tures for cancer. Surface enhanced LASER desorption and ionization with time of flight diagnosis (SELDI-TOF) spectral analysis is linked with a high-order analytical bioinformatic approach to define optimal discriminatory signature proteomic patterns. This technology is now being widely used in laboratories around the world for biomarker discovery in the early stages of cancer in general and breast cancer and cancers involving the reproductive organs such as ovary, prostate, cervix and endometrium in particular.

Keywords: Genomics, Proteomics, Early diagnosis, Reproductive organ, Cancer, Ovary, Breast, Prostate, Cervix, Endometrium

To cite this article:

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860-921.
  2. Menon U, Jacobs IJ. Recent developments in ovarian cancer screening. Curr Opin Obstet Gynecol. 2000;12 (1):39-42.
  3. Riben MW, Malfetano JH, Nazeer T, Muraca PJ, Ambros RA, Ross JS. Identification of HER-2/neu oncogene amplification by fluorescence in situ hybrid-dization in stage I endometrial carcinoma. Mod Pathol. 1997;10(8):823-31.
  4. Williams JA, Wangz R, Parrish RS, Hazlett LJ, Smith ST, Young SR. Fluorescence in situ hybridization analysis of HER-2/neu, c-myc, and p53 in endometrial cancer. Exp Mol Pathol. 1999;67:135-43.
  5. Cazares LH, Adam BL, Ward MD, Nasim S, Schell-hammer PF, Semmes OJ, et al. Normal, benign, preneo-plastic, and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry. Clin Cancer Res. 2002;8(8):2541-52.
  6. van Haaften-Day C, Shen Y, Xu F, Yu Y, Berchuck A, Havrilesky LJ, et al. OVX1, macrophage-colony stimulating factor, and CA-125-II as tumor markers for epithelial ovarian carcinoma: a critical appraisal. Cancer. 2001;92(11):2837-44.
  7. Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, et al. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. Jama. 1998; 280(8):719-23.
  8. Hellman K, Alaiya AA, Schedvins K, Steinberg W, Hellstrom AC, Auer G. Protein expression patterns in primary carcinoma of the vagina. Br J Cancer. 2004;91 (2):319-26.
  9. Lee KA, Shim JH, Kho CW, Park SG, Park BC, Kim JW, et al. Protein profiling and identification of modu-lators regulated by the E7 oncogene in the C33A cell line by proteomics and genomics. Proteomics. 2004;4 (3):839-48.
  10. Bae SM, Lee CH, Cho YL, Nam KH, Kim YW, Kim CK, et al. Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients. Gynecologic oncology. 2005;99(1):26-35.
  11. Wong YF, Cheung TH, Lo KW, Wang VW, Chan CS, Ng TB, et al. Protein profiling of cervical cancer by protein-biochips: proteomic scoring to discriminate cervical cancer from normal cervix. Cancer letters. 2004;211(2):227-34.
  12. Lee KH, Yim EK, Kim CJ, Namkoong SE, Um SJ, Park JS. Proteomic analysis of anti-cancer effects by paclitaxel treatment in cervical cancer cells. Gynecolo-gic oncology. 2005;98(1):45-53.
  13. Dube V, Grigull J, DeSouza LV, Ghanny S, Colgan TJ, Romaschin AD, et al. Verification of endometrial tissue biomarkers previously discovered using mass spectrometry-based proteomics by means of immuno-histochemistry in a tissue microarray format. J Proteome Res. 2007;6(7):2648-55.
  14. Li H, DeSouza LV, Ghanny S, Li W, Romaschin AD, Colgan TJ, et al. Identification of candidate biomarker proteins released by human endometrial and cervical cancer cells using two-dimensional liquid chromato-graphy/tandem mass spectrometry. J Proteome Res. 2007;6(7):2615-22.
  15. Risinger JI, Dent GA, Ignar-Trowbridge D, McLach-lan JA, Tsao MS, Senterman M, et al. p53 gene mutations in human endometrial carcinoma. Mol Carcinog. 1992;5(4):250-3.
  16. Ali IU. Gatekeeper for endometrium: the PTEN tumor suppressor gene. J Natl Cancer Inst. 2000;92(11):861-3.
  17. Risinger JI, Hayes K, Maxwell GL, Carney ME, Dodge RK, Barrett JC, et al. PTEN mutation in endo-metrial cancers is associated with favorable clinical and pathologic characteristics. Clin Cancer Res. 1998;4(12): 3005-10.
  18. Mutter GL. Pten, a protean tumor suppressor. Am J Pathol. 2001;158(6):1895-8.
  19. Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Baak JP, Lees JA, et al. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst. 2000;92(11):924-30.
  20. Berchuck A, Rodriguez G, Kinney RB, Soper JT, Dodge RK, Clarke-Pearson DL, et al. Overexpression of HER-2/neu in endometrial cancer is associated with advanced stage disease. Am J Obstet Gynecol. 1991;164 (1 Pt 1):15-21.
  21. Hetzel DJ, Wilson TO, Keeney GL, Roche PC, Cha SS, Podratz KC. HER-2/neu expression: a major prog-nostic factor in endometrial cancer. Gynecol Oncol. 1992;47(2):179-85.
  22. Yoshizaki T, Enomoto T, Nakashima R, Ueda Y, Kanao H, Yoshino K, et al. Altered protein expression in endometrial carcinogenesis. Cancer letters. 2005;226(2): 101-6.
  23. Bonkhoff H, Remberger K. Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate. 1996;28 (2):98-106.
  24. El-Alfy M, Pelletier G, Hermo LS, Labrie F. Unique features of the basal cells of human prostate epithelium. Microsc Res Tech. 2000;51(5):436-46.
  25. Banez LL, Srivastava S, Moul JW. Proteomics in prostate cancer. Curr Opin Urol. 2005;15(3):151-6.
  26. Ornstein DK, Gillespie JW, Paweletz CP, Duray PH, Herring J, Vocke CD, et al. Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis. 2000;21(11): 2235-42.
  27. Sobol H, Benziane A, Kerangueven F, Yin L, Noguchi T, Pauly S, et al. Genome-wide search for loss of heterozygosity in Burkitt lymphoma cell lines. Genes Chromosomes Cancer. 2002;33(2):217-24.
  28. Choi YW, Bae SM, Kim YW, Lee HN, Kim YW, Park TC, et al. Gene expression profiles in squamous cell cervical carcinoma using array-based comparative genomic hybridization analysis. Int J Gynecol Cancer. 2007;17(3):687-96.
  29. Kloth JN, Oosting J, van Wezel T, Szuhai K, Knij-nenburg J, Gorter A, et al. Combined array-comparative genomic hybridization and single-nucleotide polymer-phism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer. BMC Genomics. 2007;8:53.
  30. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture micro-dissection. Science. 1996;274(5289):998-1001.
  31. Fung KY, Glode LM, Green S, Duncan MW. A comprehensive characterization of the peptide and protein constituents of human seminal fluid. Prostate. 2004;61(2):171-81.
  32. Miyata Y, Sakai H, Hayashi T, Kanetake H. Serum insulin-like growth factor binding protein-3/prostate-specific antigen ratio is a useful predictive marker in patients with advanced prostate cancer. Prostate. 2003;54(2):125-32.
  33. Nakamura T, Scorilas A, Stephan C, Yousef GM, Kristiansen G, Jung K, et al. Quantitative analysis of macrophage inhibitory cytokine-1 (MIC-1) gene expression in human prostatic tissues. Br J Cancer. 2003;88(7):1101-4.
  34. Rubin MA, Mucci NR, Figurski J, Fecko A, Pienta KJ, Day ML. E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology. Hum Pathol. 2001;32(7):690-7.
  35. Zellweger T, Ninck C, Mirlacher M, Annefeld M, Glass AG, Gasser TC, et al. Tissue microarray analysis reveals prognostic significance of syndecan-1 expression in prostate cancer. Prostate. 2003;55(1):20-9.
  36. Mehta PB, Jenkins BL, McCarthy L, Thilak L, Robson CN, Neal DE, et al. MEK5 overexpression is associated with metastatic prostate cancer, and stimu-lates proliferation, MMP-9 expression and invasion. Oncogene. 2003;22(9):1381-9.
  37. Ross JS, Kallakury BV, Sheehan CE, Fisher HA, Kaufman RP, Jr., Kaur P, et al. Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adenocarcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. Clin Cancer Res. 2004;10(7):2466-72.
  38. Petricoin EF. 3rd, Ornstein DK, Paweletz CP, Ardekani A, Hackett PS, Hitt BA, et al. Serum proteo-mic patterns for detection of prostate cancer. J Natl Cancer Inst. 2002;94(20):1576-8.
  39. Hughes C, Elgasim M, Layfield R, Atiomo W. Genomic and post-genomic approaches to polycystic ovary syndrome-progress so far: Mini Review. Hum Reprod. 2006;21(11):2766-75.
  40. Ornstein DK, Tyson DR. Proteomics for the identify-cation of new prostate cancer biomarkers. Urol Oncol. 2006;24(3):231-6.
  41. Michener CM, Ardekani AM, Petricoin EF, 3rd, Liotta LA, Kohn EC. Genomics and proteomics: application of novel technology to early detection and prevention of cancer. Cancer Detect Prev. 2002; 26(4):249-55.
  42. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture micro-dissection. Science. 1996;998-1001.
  43. Bonner RF, Emmert-Buck MR, Cole K, Pohida T, Chuaqui RF, Goldstein S, et al. Laser capture microdis-section: molecular analysis of tissue. Science. 1997;278: 1481-3.
  44. Jares P, Camo E. Genomic platforms for cancer research: potential diagnostic and prognostic applications in clinical oncology. Clin Transl Oncol. 2006;8:161-72.
  45. Chung CH, Levy S, Chaurand P, Carbone DP. Genomics and proteomics: Emerging technologies in clinical cancer research. Crit Rev Oncol Hematol. 2007;61:1-25.
  46. Petricoin III EF, Ardekani AM, Hitt BA, Levine PJ, Steinberg SM, Mills GB, et al. Use of proteomic patterns in sera detect early stage ovarian cancer. Lancet. 2002; 359:572-7.
  47. Mittal V, Nolan DJ. Genomics and proteomics app-roaches in understanding tumor angiogenesis. Expert Rev Mol Diagn. 2007;7(2):133-47.
  48. Miller BA, Hankey BF, Kosary CL, Harris A, Edwards BK. Editors. Bethesda. National Cancer Institute. SEER Cancer Statistics Review: 1973-1991. In: Ries LAG. 1994:136-44.
  49. Bernard HU, Chan SY, Manos MM, Ong CK, Villa LL, Delius H, Peyton CL, et al. Identification and assessment of known and novel human papillomaviruses by polymerase chain reaction amplification, restriction fragment length polymorphisms, nucleotide sequence, and phylogenetic algorithms. J Infect Dis. 1994;170(5): 1077-85.
  50. Bauer HM, Ting Y, Greer CE, Chambers JC, Tashiro CJ, Chimera J, et al. Genital human papillomavirus infection in female university students as determined by a PCR-based method. JAMA. 1991;265:472-7.
  51. Harkin DP. Genomics and the impact of new techno-logies on the management of colorectal cancer. Oncologist. 2006;11(9):988-91.
  52. Franzen B, Hirano T, Okuzawa K, Uryu K, Alaiya AA, Linder S, et al. Sample preparation of human tumors prior to two-dimensional electrophoresis of proteins. Electrophoresis. 1995;16(7):1087-9.
  53. Zvibel I, Brill S, Papa M, Halpern Z. Hepatocyte-derived soluble factors regulate proliferation and auto-crine growth factor expression in colon cancer cell lines of varying liver-colonizing capability. Tumour Biol. 2000;21(4):187-96.
  54. Bemis LT, Schedin P. Reproductive state of rat mammary gland stroma modulates human breast cancer cell migration and invasion. Cancer Res. 2000;60(13): 3414-8.
  55. Chung LW. Fibroblasts are critical determinants in prostatic cancer growth and dissemination. Cancer Metastasis Rev. 1991;10(3):263-74.
  56. Berger SJ, DeVries GW, Carter JG, Schulz DW, Passonneau PN, Lowry OH, et al. The distribution of the components of the cyclic GMP cycle in retina. J Biol Chem. 1980;255(7):3128-33.
  57. Radford DM, Fair K, Thompson AM, Ritter JH, Holt M, Steinbrueck T, et al. Allelic loss on a chromosome 17 in ductal carcinoma in situ of the breast. Cancer Res. 1983;53:2947-9.
  58. Liotta LA, Kohn EC. The microenvironment of the tumor-host interface. Nature. 2001;411:75-9.
  59. Bielas JH, Venkatesan RN, Loeb LA. LOH-proficient embryonic stem cells: a model of cancer progenitor cells?. Trends Genet. 2007;23(4):154-7.
  60. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet. 1999;21(1):99-102.
  61. Wadlow R, Ramaswamy S. DNA microarrays in clini-cal cancer research. Curr Mol Med. 2005;5(1):111-20.
  62. Fodor SP, Rava RP, Huang XC, Pease AC, Holmes CP, Adams CL. Multiplexed biochemical assays with biolo-gical chips. Nature. 1993;364(6437):555-6.
  63. DeRisi J PL, Brown PO, Bittner ML, Meltzer PS, et al. 457-60. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet. 1996;14:457-60.
  64. Nagahata T, Onda M, Emi M, Nagai H, Sato T, Nishikawa K, Akiyama F, Sakamoto G, Kasumi F. Expression profiling to predict postoperative prognosis for estrogen receptor-negative breast cancers by analysis of 25,344 genes on a cDNA microarray. Cancer Sci. 2004;95:218-25.
  65. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R, et al. Gene expression profil-ing for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet. 2003; 362(9381):362-9.
  66. Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol. 2004;22 (12):2284-93.
  67. Grisaru D, Hauspy J, Prasad M, Albert M, Murphy KJ, Covens A, et al. Microarray expression identification of differentially expressed genes in serous epithelial ova-rian cancer compared with bulk normal ovarian tissue and ovarian surface scrapings. Oncol Rep. 2007;18(6): 1347-56.
  68. Bignotti E, Tassi RA, Calza S, Ravaggi A, Romani C, Rossi E, et al. Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therapy. Gynecol Oncol. 2006;103(2):405-16.
  69. Bignotti E, Tassi RA, Calza S, Ravaggi A, Bandiera E, Rossi E, et al. Gene expression profile of ovarian serous papillary carcinomas: identification of metastasis-associated genes. Am J Obstet Gynecol. 2007;196(3): 245 e1-11.
  70. Lancaster JM, Dressman HK, Whitaker RS, Havrilesky L, Gray J, Marks JR, et al. Gene expression patterns that characterize advanced stage serous ovarian cancers. J Soc Gynecol Investig. 2004;11(1):51-9.
  71. Zhang L, Zhouw ZW, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, et al. Gene expression profiles in normal and cancer cells. Science. 1997;276: 1268-72.
  72. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens Nat Med. 1998;4(7):844-7.
  73. Clarke PA, te Poele R, Wooster R, Workman P. Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem Pharmacol. 2001;62(10):1311-36.
  74. Chin KV, Kong AN. Application of DNA microarrays in pharmacogenomics and toxicogenomics. Pharm Res. 2002;19(12):1773-8.
  75. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415 (6871):530-6.
  76. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lympho-blastic leukemia by gene expression profiling. Cancer Cell. 2002;1(2):133-43.
  77. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346 (25):1937-47.
  78. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med. 2002;8(8):816-24.
  79. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999-2009.
  80. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-52.
  81. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19): 10869-74
  82. Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell. 2004;15(6):2523-36.
  83. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004;5(6):607-16.
  84. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA. 2003; 100(18):10393-8.
  85. Ahr A, Karn T, Solbach C, Seiter T, Strebhardt K, Holtrich U, et al. Identification of high risk breast-cancer patients by gene expression profiling. Lancet. 2002;359 (9301):131-2.
  86. Onda M, Emi M, Nagai H, Nagahata T, Tsumagari K, Fujimoto T, et al. Gene expression patterns as marker for 5-year postoperative prognosis of primary breast cancers. J Cancer Res Clin Oncol. 2004;130(9):537-45.
  87. Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF, et al. Gene expression predictors of breast cancer outcomes. Lancet. 2003;361(9369):1590-6.
  88. Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics. CA Cancer J Clin. 2001;50 7-33.
  89. Boffetta P, Parkin DM. Cancer in developing countries. CA Cancer J Clin. 1994;44:81-90.
  90. Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer. 1999;83(1):18-29.
  91. Benedet JL, Odicino F, Maisonneuve P, Beller U, Creasman WT, Heintz AP, et al. Carcinoma of the cervix uteri. J Epidemiol Biostat. 2001;6(1):7-43.
  92. Wong YF, Selvanayagam ZE, Wei N, Porter J, Vittal R, Hu R, et al. Expression genomics of cervical cancer: molecular classification and prediction of radiotherapy response by DNA microarray. Clin Cancer Res. 2003;9 (15):5486-92.
  93. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304-51.
  94. Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004;22(14):2790-9.
  95. Fujimoto TNA, Iwasaki M, Akutagawa N, Teramoto M KR. Gene expression profiling in two morphologically different uterine cervical carcinoma cell lines derived from a single donor using a human cancer cDNA array. Gynecol Oncol. 2004;93:446-53.
  96. Achary MP, Jaggernauth W, Gross E, Alfieri A, Klinger HP, Genet VBCC. Cell lines from the same cervical carcinoma but with different radiosensitivities exhibit different cDNA microarray patterns of gene expression. 2000;91:39-43.
  97. Kloth JN, Fleuren GJ, Oosting J, de Menezes RX, Eilers PH, Kenter GG, et al. Substantial changes in gene expression of Wnt, MAPK and TNFalpha pathways induced by TGF-beta1 in cervical cancer cell lines. Carcinogenesis. 2005;26(9):1493-502.
  98. Hudelist G, Czerwenka K, Singer C, Pischinger K, Kubista E, Manavi M. cDNA array analysis of cytobrush-collected normal and malignant cervical epi-thelial cells: a feasibility study. Cancer Genet Cytogenet. 2005;158(1):35-42.
  99. Cheng Q, Lau WM, Tay SK, Chew SH, Ho TH, Hui KM. Identification and characterization of genes involved in the carcinogenesis of human squamous cell cervical carcinoma. Int J Cancer. 2002;98(3):419-26.
  100. Chao A, Wang TH, Lee YS, Hsueh S, Chao AS, Chang TC, et al. Molecular characterization of adenocarcinoma and squamous carcinoma of the uterine cervix using microarray analysis of gene expression. Int J Cancer. 2006;119(1):91-8.
  101. Contag SA, Gostout BS, Clayton AC, Dixon MH, McGovern RM, Calhoun ES. Comparison of gene expression in squamous cell carcinoma and adeno-carcinoma of the uterine cervix. Gynecol Oncol. 2004; 95(3):610-7.
  102. Narayan G, Bourdon V, Chaganti S, Arias-Pulido H, Nandula SV, Rao PH, et al. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and over-expressed genes. Genes Chromosomes Cancer. 2007;46 (4):373-84.
  103. Kiechle M, Hinrichs M, Jacobsen A, Luttges J, Pfisterer J, Kommoss F, et al. Genetic imbalances in precursor lesions of endometrial cancer detected by comparative genomic hybridization. Am J Pathol. 2000;156(6):1827-33.
  104. Luo J, Duggan DJ, Chen Y, Sauvageot J, Ewing CM, Bittner ML, et al. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 2001;61(12):4683-8.
  105. Clark J, Edwards S, Feber A, Flohr P, John M, Giddings I, et al. Genome-wide screening for complete genetic loss in prostate cancer by comparative hybrid-dization onto cDNA microarrays. Oncogene. 2003;22 (8):1247-52.
  106. Wolf M, Mousses S, Hautaniemi S, Karhu R, Huusko P, Allinen M, et al. High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression. Neoplasia. 2004;6(3):240-7.
  107. Isaacs W, De Marzo A, Nelson WG. Focus on prostate cancer. Cancer Cell. 2002;2(2):113-6.
  108. Ashida S, Nakagawa H, Katagiri T, Furihata M, Iiizumi M, Anazawa Y, et al. Molecular features of the transi-tion from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res. 2004;64(17): 5963-72.
  109. Klezovitch O, Chevillet J, Mirosevich J, Roberts RL, Matusik RJ, Vasioukhin V. Hepsin promotes prostate cancer progression and metastasis. Cancer Cell. 2004;6 (2):185-95.
  110. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science. 1995;270 (5235):484-7.
  111. MacBeath G, Schreiber SL. Printing proteins as micro-arrays for high-throughput function determination. Science. 2000;289(5485):1760-3.
  112. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707-12.
  113. Bur ME, Perlman C, Edelmann L, Fey E, Rose PG. p53 expression in neoplasms of the uterine corpus. Am J Clin Pathol. 1992;98(1):81-7.
  114. Somiari RI, Sullivan A, Russell S, Somiari S, Hu H, Jordan R, et al. High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast. Proteomics. 2003;3(10):1863-73.
  115. Nimeus E, Malmstrom J, Johnsson A, Marko-Varga G, Ferno M. Proteomic analysis identifies candidate proteins associated with distant recurrences in breast cancer after adjuvant chemotherapy. J Pharm Biomed Anal. 2007;43(3):1086-93.
  116. Gagne JP, Ethier C, Gagne P, Mercier G, Bonicalzi ME, Mes-Masson AM, et al. Comparative proteome analysis of human epithelial ovarian cancer. Proteome science [electronic resource]. 2007;5:16.
  117. Farias-Eisner R, Teng F, Oliveira M, Leuchter R, Karlan B, Lagasse LD, et al. The influence of tumor grade, distribution, and extent of carcinomatosis in minimal residual stage III epithelial ovarian cancer after optimal primary cytoreductive surgery. Gynecol Oncol. 1994;55(1):108-10.
  118. Hale RJ, Buckley CH, Gullick WJ, Fox H, Williams J, Wilcox FL. Prognostic value of epidermal growth factor receptor expression in cervical carcinoma. J Clin Pathol. 1993;46(2):149-53.
  119. Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res. 1998;58 (13):2825-31.
  120. Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D, et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humaniz-ed anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol. 1998;16(8):2659-71.
  121. Kwiatkowski DJ, Harpole DH, Jr., Godleski J, Herndon JE, 2nd, Shieh DB, Richards W, et al. Molecular pathologic substaging in 244 stage I non-small-cell lung cancer patients: clinical implications. J Clin Oncol. 1998;16(7):2468-77.
  122. Chung YL, Sheu ML, Yang SC, Lin CH, Yen SH. Resistance to tamoxifen-induced apoptosis is associated with direct interaction between Her2/neu and cell membrane estrogen receptor in breast cancer. Int J Cancer. 2002;97(3):306-12.
  123. Fisher B, Costantino J, Redmond C, Poisson R, Bowman D, Couture J, et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N Engl J Med. 1989;320(8): 479-84.
  124. Lueking A, Horn M, Eickhoff H, Bussow K, Lehrach H, Walter G. Protein microarrays for gene expression and antibody screening. Anal Biochem. 1999;270(1): 103-11.
  125. Vasiliskov AV, Timofeev EN, Surzhikov SA, Dro-byshev AL, Shick VV, Mirzabekov AD. Fabrication of microarray of gel-immobilized compounds on a chip by copolymerization. Biotechniques. 1999;27(3):592-4, 6-8, 600 passim.
  126. Emmert-Buck MR, Strausberg RL, Krizman DB, Bonaldo MF, Bonner RF, Bostwick DG, et al. Molecular profiling of clinical tissues specimens: feasibility and applications. J Mol Diagn. 2000;2(2):60-6.
  127. Paweletz CP, Ornstein DK, Roth MJ, Bichsel VE, Gillespie JW, Calvert VS, et al. Loss of annexin 1 correlates with early onset of tumorigenesis in esopha-geal and prostate carcinoma. Cancer Res. 2000;60(22): 6293-7.
  128. Leak LV, Petricoin EF, 3rd, Jones M, Paweletz CP, Ardekani AM, Fusaro VA, et al. Proteomic technologies to study diseases of the lymphatic vascular system. Ann N Y Acad Sci. 2002;979:211-28, 29-34.
  129. Ardekani AM, Petricoin EF, 3rd, Hackett JL. Molecular diagnostics: an FDA perspective. Expert Rev Mol Diagn. 2003;3(2):129-40.
  130. Wulfkuhle JD, Sgroi DC, Krutzsch H, McLean K, McGarvey K, Knowlton M, et al. Proteomics of human breast ductal carcinoma in situ. Cancer Res. 2002;62 (22):6740-9.
  131. Canelle L, Bousquet J, Pionneau C, Hardouin J, Choquet-Kastylevsky G, Joubert-Caron R, et al. A proteomic approach to investigate potential biomarkers directed against membrane-associated breast cancer proteins. Electrophoresis. 2006;27(8):1609-16.
  132. Claudio L. Making progress on breast cancer. Environ Health Perspect. 2006;114(2):A98-9.
  133. Wang L, Zhu YF, Guo XJ, Huo R, Ma X, Lin M, et al. A two-dimensional electrophoresis reference map of human ovary. Journal of molecular J Mol Med. 2005;83(10):812-21.
  134. Farias-Eisner R, Kim YB, Berek JS. Surgical manage-ment of ovarian cancer. Semin Surg Oncol. 1994;10(4): 268-75.
  135. Jacobs IJ, Skates SJ, MacDonald N, Menon U, Rosenthal AN, Davies AP, et al. Screening for ovarian cancer: a pilot randomised controlled trial. Lancet. 1999; 353(9160):1207-10.
  136. Jacobs IJ, Menon U. Progress and challenges in screening for early detection of ovarian cancer. Mol Cell Proteomics. 2004;3(4):355-66.

Home | About Us | Current Issue | Past Issues | Submit a Manuscript | Instructions for Authors | Subscribe | Search | Contact Us

"Journal of Reproduction & Infertility" is owned, published, and copyrighted by Avicenna Research Institute .
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

Journal of Reproductoin and Infertility (JRI) is a member of COMMITTEE ON PUBLICATION ETHICS . Verify here .

©2016 - eISSN : 2251-676X, ISSN : 2228-5482, For any comments and questions please contact us.